посл. Гранд Унив...
посл. ООО "Промп...
- Германия...-22.2%
- Россия...-44.4%
Система отопления с использованием балансировочных клапанов
Л. М. Махов
С. М. Усиков, МГСУ
Система показана на рис. 3. На подающем теплопроводе установлен балансировочный клапан. В этом случае общая характеристика сопротивления, а вместе с ней и потери давления в системе значительно увеличатся из-за того, что балансировочный клапан имеет большие потери давления в своей конструкции. Следовательно, насос на такой системе будет более мощный.
В расчетных условиях (все приборы работают) пропускные способности клапанов у приборов будут находиться в диапазоне 0,23…0,43 (м3/ч)/бар0,5, а перепады давлений – 1097…2574 Па. Пропускная способность балансировочного клапана будет иметь значение 0,95 (м3/ч)/бар0,5, а перепад давления – 12262 Па.
Проведем те же операции по разрегулировке системы, что и в первом случае.
При отключении стояка или одного отопительного прибора можно отрегулировать систему. Однако одного балансировочного клапана не будет достаточно, т. к. он не влияет на коэффициенты затекания воды в стояки и приборы, а будет изменять только общую характеристику сопротивления всей системы. Иллюстрация к этому замечанию приведена на рис. 4. Важно отметить, что при отключении первого прибора пропускные способности клапанов у приборов будут находиться в диапазоне 0,21…0,49 (м3/ч)/бар0,5, а при отключении стояка – 0,20…0,39 (м3/ч)/бар0,5.
Эти цифры показывают, что отклонение расчетных значений пропускных способностей клапанов меньше относительно первого случая (без применения балансировочного клапана).
Наконец, рассмотрим третий случай (рис. 5). На каждом стояке стоит пара балансировочных клапанов (регулирующий и дублер), соединенных между собой импульсной трубкой, с помощью которой поддерживается постоянный перепад давления на стояке. Принцип работы заключается в том, что данная пара клапанов поддерживает постоянный расход на стояке при постоянном перепаде давления. Регулирующий клапан изменяет свою пропускную способность в зависимости от считываемого значения перепада давления на стояке, тем самым поддерживая постоянный расход. Однако, если учитывать, что характеристика насоса не является линейной (для стандартных насосов), то при одном и том же перепаде давления на стояке расход может быть абсолютно различным. Исследуем эту схему аналогично предыдущим (рис. 4).
Когда система работает в расчетном режиме, пропускная способность клапанов у приборов находится в диапазоне 0,27…0,46 (м3/ч)/бар0,5. Пропускная способность дублирующих клапанов неизменна и составляет 1,6 (м3/ч)/бар0,5. Пропускная способность балансировочного клапана составляет 0,32; 0,275; 0,34 (м3/ч)/бар0,5 для первого, второго и третьего стояка соответственно. Потери давления на трех стояках без учета потерь на балансировочном клапане составляют 1756, 1912 и 1881 Па соответственно. Этот перепад давления будет поддерживаться на каждом стояке при отключении элементов системы отопления.
При отключении первого прибора или стояка на балансировочных клапанах происходит изменение пропускной способности в зависимости от потерь давления на стояке. Однако и здесь для полного регулирования системы следует изменить значения пропускных способностей клапанов у приборов. Они будут находиться в диапазоне 0,29…0,44 (м3/ч)/бар0,5 при отключении прибора и 0,25…0,5 (м3/ч)/бар0,5 при отключении первого стояка. Заметим, что эти значения мало отличаются от расчетных, что говорит об устойчивой работе системы.Когда система работает в расчетном режиме, пропускная способность клапанов у приборов находится в диапазоне 0,27…0,46 (м3/ч)/бар0,5. Пропускная способность дублирующих клапанов неизменна и составляет 1,6 (м3/ч)/бар0,5. Пропускная способность балансировочного клапана составляет 0,32; 0,275; 0,34 (м3/ч)/бар0,5 для первого, второго и третьего стояка соответственно. Потери давления на трех стояках без учета потерь на балансировочном клапане составляют 1756, 1912 и 1881 Па соответственно. Этот перепад давления будет поддерживаться на каждом стояке при отключении элементов системы отопления.
Первая система (рис. 2) проста в устройстве, более дешевая, как с точки зрения капитальных затрат, так и эксплуатационных, и, самое главное, способна саморегулироваться. Правда, точность регулирования в таком случае (по отклонению расходов в отопительных приборах) может достигать 8–11 % в связи с тем, что автоматике или человеку довольно сложно точно опустить шпиндель клапана на необходимую глубину. Это обусловлено тем, что при низких значениях пропускной способности ход штока сильно влияет на количество теплоносителя, проходящего через клапан. Эти исследования подробно приведены в [1].
Вторая система (рис. 4) положительна тем, что часть регулирующего воздействия на себя берет балансировочный клапан, а точность регулировки составляет от 7 до 9 %.
Сложность регулировки заключается в том, что балансировочный клапан будет обслуживать специалист, хорошо знакомый с гидравликой данной системы, который будет знать, насколько надо увеличить сопротивление на клапане в случае отключения элементов системы отопления. Такой вариант возможен только тогда, когда планово отключаются целые ветви системы отопления.
Третья система (рис. 6) вполне удовлетворяет в плане автоматической регулировки. Почти всю регулирующую способность на себя берут балансировочные клапаны, и точность регулировки достигла в исследованиях условиях 1–3 %. Однако стоимость такой системы будет значительна, будут велики затраты на сервисное обслуживание клапанов, а его еще надо обеспечить, а также из-за значительных потерь давления на клапанах будет большой расход электроэнергии, потребляемой циркуляционными насосами.Сложность регулировки заключается в том, что балансировочный клапан будет обслуживать специалист, хорошо знакомый с гидравликой данной системы, который будет знать, насколько надо увеличить сопротивление на клапане в случае отключения элементов системы отопления. Такой вариант возможен только тогда, когда планово отключаются целые ветви системы отопления.
Выводы
Основным фактором, влияющим на выбор количества и типа арматуры, является назначение здания и вида его эксплуатации. Например, если это жилое или административное здание, в котором не предусматривается полное длительное отключение целых стояков или ветвей (только в аварийных случаях), то вполне можно применить классический метод увязки колец циркуляции диаметрами труб. Конечно, желательно и даже необходимо у каждого прибора установить термоклапаны, т. к. это будет залогом энергоэффективности системы. А также обеспечит автоматическую регулировку системы и поддержание комфортных условий в каждом помещении.
Однако, если провести качественный гидравлический расчет системы, то можно обойтись и без регуляторов. Нужно при этом установить клапаны с определенной пропускной способностью и зафиксировать ее. Тогда комфорт будет достигнут тогда, когда вся система отопления полностью задействована.
Если проектируется система отопления в здании, например, гостиницы, где регулирование теплоотдачи прибора является одной из важных составляющих достижения комфорта, или, например, фитнес-центра, где спортзалы могут полностью отключаться, то очень важно учесть разрегулировочное воздействие системы. Могут отключаться не только отдельные приборы в отдельных помещениях, но и целые стояки, ветви, корпуса. В таком случае можно предложить два способа регулирования.
Первый способ применим, если этажность и протяженность здания довольно велика, здание имеет много корпусов, а регулирования невозможно достичь только за счет клапанов у приборов, то можно установить достаточное количество регулирующей арматуры и автоматики на всей системе отопления. При любом разрегулировочном воздействии на систему будет восстановлен необходимый расход на каждом приборе.
Этот способ имеет ряд положительных качеств, таких как упрощенный гидравлический расчет, точное регулирование системы при различных воздействиях, пониженный расход металла и возможность организовать один мощный тепловой пункт в большом здании, а систему отопления сделать более протяженной.
Минусы первого способа будут существенными: завышенный расход электроэнергии, необходимость обслуживания системы, меньшая надежность всех элементов, высокие капитальные затраты на регулирующую арматуру. Также важно заметить, что необходимо соблюдать жесткие требования к качеству воды. Регулирующая арматура имеет элементы, имеющие низкие сечения для прохода воды, поэтому если на них будут осаждаться загрязнения, то они быстро выйдут из строя.
Второй способ предлагает разбить систему отопления на несколько систем, провести качественный гидравлический расчет и обеспечить регулирование только за счет клапанов у приборов. Таким образов, при необходимости можно отключить целую систему отопления, что никак не повлияет на работу остальных систем.
У этого способа имеются минусы: повышенная металлоемкость, возможно, будет необходима установка нескольких тепловых пунктов (для больших зданий) и более сложный гидравлический расчет.
Однако такая система имеет множество плюсов. Насосы в такой системе будут менее мощными, а значит и расход электроэнергии на них будет значительно меньше, чем в первом способе. Будет повышена надежность системы, т. к. она состоит из меньшего числа элементов, которые могут выйти из строя. И, наконец, удешевление системы за счет сокращения количества дорогой арматуры.
Если система отопления небольшая и здание имеет небольшую протяженность и этажность, то необходимо проводить качественный гидравлический расчет с увязкой каждого кольца и проведение анализа работы системы.
Каким бы не было решение при выборе различных методов конструирования системы отопления проектировщик должен помнить несколько принципов:
- проект должен быть экономичным, как с точки зрения капитальных затрат, так и с точки зрения эксплуатационных;
- проектируемая система отопления должна быть проста и удобна в монтаже, быть надежной и ремонтопригодной;
- должны быть хорошо продуманы и проверены расчетом возможные изменения гидравлики системы при расчетном и эксплуатационных режимах;
При выполнении этих требований проект будет по-настоящему качественен, а система отопления – долговечной и удобной в эксплуатации.
Литература
- Пырков В. В. Гидравлическое регулирование систем отопления и охлаждения. Теория и практика. Киев, 2005.
- Сканави А. Н., Махов Л. М. Отопление: Учебник для вузов. М., 2008.
Источник: abok.ru